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Abstract—Under competitive pressure to maximize their in-
frastructure’s utilization and revenue, modern cloud platforms
are quickly evolving into server markets that offer increasingly
sophisticated contracts beyond simple on-demand servers, such
as spot, preemptible, burstable, and reserved servers. In parallel,
continuing advances in system and network virtualization are
making server-time a more fungible commodity. These trends
have motivated calls for open cloud commodity markets akin to
other commodity markets, e.g., for oil, gold, corn, etc. However,
such open cloud markets have not yet materialized due to
key differences between cloud resources and other commodi-
ties. In particular, the relationship between applications and
their underlying server resources is fundamentally different and
more complex than other commodities. Unfortunately, software
developers generally do not have the necessary background to
effectively manage this complexity as part of their applications.
Financial cloud computing is an emerging area that focuses on
adapting and extending concepts from economics and finance
to explicitly manage applications’ tradeoffs between cost, risk,
availability, and performance in cloud markets. A key goal of
financial cloud computing is to develop systems-level abstractions
and mechanisms that manage the market’s complexity. This
paper introduces this emerging area and its potential benefits,
surveys related work, discusses challenges to realizing a cloud
commodity market, and then outlines future research directions.

I. INTRODUCTION

Cloud computing is quickly becoming the foundation of
our Information-based economy, providing the large-scale
computing power necessary to advance nearly every segment
of society, including transportation, energy, communication,
healthcare, science, and entertainment. Cloud platforms pro-
vide numerous benefits, including low prices, a pay-as-you-go
billing model, the on-demand allocation of resources, and the
illusion of near-infinite scalability. As a result, businesses are
increasingly renting computation and storage from the cloud
rather than using their own private infrastructure.

Cloud platforms have evolved significantly over the past ten
years. Initially, platforms exposed only a simple abstraction to
users: the choice of a small number of on-demand servers for
a fixed per-hour price. However, under competitive pressure to
maximize their infrastructure’s utilization and revenue, modern
cloud platforms are quickly evolving into complex markets for
server-time by offering a multitude of increasingly sophisti-
cated contracts beyond simple on-demand servers that specify
much more complex Service Level Objectives (SLOs) [1]. For
example, spot instances in EC2 enable users to bid on servers.
If a user’s bid price exceeds the servers’ current spot price,

the platform allocates the servers to the user, who pays the
variable spot price for them. However, if the spot price rises
above the bid price, the platform immediately revokes the
servers after a brief warning [2]. While spot servers expose
users to a high revocation risk, they cost ∼50-90% less than
on-demand servers, which platforms cannot revoke. The spot
market exposes key elements that are intrinsic to all markets—
risk and uncertainty—that are largely been absent from (or
hidden by) platforms that offer only on-demand servers. While
the risk of spot servers is clear, as we discuss, other contracts
expose users to other risks that are less apparent.

By offering different contracts, cloud platforms can increase
their infrastructure’s utilization and revenue, while also offer-
ing users more customized purchasing options tailored to their
requirements. For example, spot instances enable platforms to
allocate their idle capacity, while retaining the flexibility to
reclaim those resources to satisfy higher-priority requests, e.g.,
for on-demand or reserved servers. In parallel, spot instances
benefit users with flexible, delay-tolerant workloads that can
tolerate revocations by significantly reducing their costs. In
contrast, reserved instances in EC2 require users to purchase
server-time upfront for a long fixed term, e.g., 1 to 3 years,
and includes an “obtainability” guarantee [3]. That is, EC2
guarantees to never reject a request for a previously reserved
instance due to lack of capacity. Reserved instances enable
highly risk-averse users to ensure capacity is available when
necessary. Note that, since on-demand instances do not have
an obtainability guarantee, EC2 may reject requests during
periods of high demand. Thus, on-demand services implicitly
expose users to rejection risk. In addition to the contracts
above, EC2 and other platforms now offer a wide range of
other contract variants that differ in their cost model, price
level, performance guarantees, and risk exposure [1], [4].

The sophistication and diversity of cloud contracts increas-
ingly mirrors those found in other commodity markets, e.g., for
fuel, electricity, agricultural products, and metals, which offer
a range of similar contract types. Companies, such as electric
utilities and airlines, that rely on these commodities typically
engage in sophisticated market strategies to explicitly manage
their tradeoff between the commodity’s cost and its risk,
e.g., of future price volatility and supply shortages. Similarly,
cloud platforms represent an emerging commodity market
for server-time that technology companies will increasingly
have to actively engage in to compete, as companies that
can significantly reduce their costs, while limiting their risk,
will gain a competitive advantage. In essence, computingICCCN17; Vancouver, CA; August 2017
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represents the new “fuel” for the IT economy.
The trends above have motivated calls for an open cloud

commodity market from both researchers [5], [6], [7] and
industry [8], [9], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. However, such open cloud commodity markets have
not yet materialized due to key differences between cloud
resources and other commodities. In particular, the relationship
between applications and their underlying server resources is
fundamentally different and more complex than other com-
modities. For example, servers are stateful such that migrating
between servers, or experiencing a server revocation in the
spot market, incurs a performance penalty and may affect ap-
plication correctness. In addition, applications have numerous,
often implicit, dependencies on a specific platform based on
its underlying hardware, software, and network, which restricts
the flexibility of applications to “move with the market” and
always exploit the lowest cost resources. Finally, there are
security and privacy concerns with running applications in the
cloud, requiring the user and provider to trust each other.

As a result, server-time has not yet to become a truly
fungible resource, such that a server from one provider can
freely substitute for a server from another provider. The
complexity above also creates significant barriers to entering
the market, resulting in commodity clouds currently being
dominated by a small number of large, monopolistic providers,
e.g., Amazon, Google, and Microsoft. Thus far, only these few
providers have been able to amass the technical expertise, trust,
and scale required to offer cloud servers as a commodity.

However, continuing advances in system and network vir-
tualization are increasingly making server-time more fungible.
For example, recent work on nested virtualization and “super-
clouds” is eliminating many of the implicit dependencies that
bind applications to a specific cloud or hardware platform [18];
advances in data center and wide-area networking are reducing
the time and performance penalty from migrating state to
take advantage of low prices; and new security and privacy
mechanisms, such as Intel SGX, are decreasing the trust
applications must place in cloud providers and vice versa [19],
[20]. In addition, the emergence of large-scale co-location data
centers, which host cloud servers on behalf of customers, are
enabling small providers to take advantage of the operational
efficiencies and economies-of-scale of large data centers [7].

As servers become more fungible, we expect cloud server
resources to evolve into a true commodity market where a wide
range of providers can offer server resources under a variety
of pricing models. That said, the scale of today’s monopolistic
cloud platforms has already spawned rich internal cloud mar-
kets for resources, as indicated by the large set of complex
contracts that are now offered. Unfortunately, application
developers generally do not have the background to manage
the complexity of optimally selecting from a large number of
complex cloud contracts as part of their applications. As a
result, most applications still use simple on-demand servers,
despite their relative high cost, with a recent report indicating
that cloud users are not highly sensitive to server prices [9]. In
particular, cloud servers have a low price elasticity of demand,

such that changes in price have a small effect on the demand.
This price inelasticity has motivated a “race to the top,”

where cloud providers add increasingly higher level services to
attract consumers, rather than reduce server prices. The com-
mon assumption is that users do not respond to server prices
because they do not care. However, we argue that users are
not sensitive to changes in price because applications are not
“financially aware:” their policies do not treat cloud resource
allocation as an investment decision, and their mechanisms and
policies are not sufficiently flexible to enable them to respond
to changes in market prices. As spot instances illustrate, for
applications that can effectively manage this complexity, cloud
markets offer the potential for significant savings.

Financial cloud computing is a new area that focuses on
adapting and extending concepts from economics and finance
to automate and simplify the management of applications’
cost and risk in cloud markets. Importantly, financial cloud
computing differs from prior work on “market-based” resource
allocation, which i) largely targeted synthetic markets using
virtual currency and not real money [21], ii) focused on
optimizing resource allocation and not managing risk, and iii)
pre-dated the emergence of complex server contracts offered
by real cloud platforms. In particular, a key goal of financial
cloud computing is to elevate risk management to a first-class
application and systems design principle by selecting the set
of servers and contracts that yield the highest risk-adjusted
returns. As we discuss, we can apply risk management tech-
niques across multiple dimensions, e.g., time, server types,
contracts, etc., and at multiple layers of the software stack,
e.g., the application-, systems-, and financial-level.

This paper surveys recent work on developing financially-
aware cloud applications and systems, and discusses future
research directions. Section 2 reviews background and related
work that falls under the umbrella of financial cloud comput-
ing. Section 3 then describes core risk management techniques
from finance, including diversification, trading, and hedging,
and initial adaptations and extensions of these techniques for
cloud computing platforms. Section 4 discusses applying these
techniques at different levels of the software stack. Finally,
Section 5 outlines potential research directions and concludes.

II. BACKGROUND

Similar to conventional financial services, financial cloud
computing determines how a user (or group of users) should
invest in cloud resources, e.g., by selecting the mix of servers
and contracts required to meet a target level of performance for
an expected workload. In conventional commodity markets,
there are a range of spot contracts and futures contracts.
Spot contracts offer commodities for immediate delivery, while
futures contracts offer commodities for delivery at some future
date. Companies that rely on commodities buy and sell spot
and futures contracts based on their expectations of future
workload and future market prices. For example, an airline
might purchase fuel futures to meet its expected fuel demands
over the next year. Then, as the year progresses, if the actual
demand is lower or higher than the expected demand at any



Contract Provider Cost Model Price Level Performance Rejection Risk Revocation Risk
On-demand EC2 Fixed Hourly Fixed (Medium) Low Variability Yes No
On-demand EC2 Fixed Hourly Fixed (Medium) High Variability Yes No
Dedicated EC2 Fixed Hourly Fixed (High) Fixed Yes No
Dedicated EC2 Fixed Yearly Fixed (High) Fixed Yes No
Reserved EC2 Fixed Yearly Variable (High) Low Variability No No

Reserved Market EC2 Variable Variable (High) Low Variability No No
Spot EC2 Variable Hourly Variable (Low) Low Variability Subject to Bid Variable

Spot Block EC2 Variable 1-6 hours Variable (Low) Low Variability Subject to Bid On Block Expiry
On-demand GCE Sustained-use Discount Fixed (Medium) Low Variability Yes No
On-demand GCE Sustained-use Discount Fixed (Medium) High Variability Yes No
Preemptible GCE Fixed Fixed (Low) Low Variability Yes Yes

TABLE I: Summary of the high-level terms for a subset of the server contracts offered by EC2 and GCE. Contract terms differ
in their cost model, price level, performance, rejection risk, and revocation risk [1], [4].

point, it might sell or buy, respectively, spot contracts (or
shorter term futures contracts) to ensure they match their real-
time supply with their demand. In general, the more accurate a
company’s predictions of its future demand and future market
prices, the higher the savings it can achieve in the market.

However, there are many differences between cloud com-
modity markets and conventional commodity markets. In
particular, while the investment strategies in conventional
commodity markets consist of pure financial transactions,
any trading of cloud resources must directly integrate with
the systems and applications running on those resources.
For example, to use a recently-allocated spot server, users
must first initialize an application on it, which introduces
system and application complexity and incurs a performance
penalty. Cloud resources are also not a homogenous pool
like other commodities, but are instead divided into discrete
resource bundles, e.g., of CPU, memory, disk, etc., based
on the underlying server hardware with a distinct price. As
we discuss, cloud applications have an incentive to actively
“trade” these resource bundles, e.g., by migrating from one
bundle to another bundle, as their resource demands change
to minimize their cost per resources used. However, cloud
resource demands change in real time, and are much more
dynamic than most other commodities. Server-time is similar
to electricity in that it must be used in real time, or it is wasted.
To take advantage of such trading, though, systems must be
flexible enough to migrate to new resources.

As the examples above illustrate, financial cloud computing
must not only address the strategies for investing in cloud
resources (based on expectations of future workload and
prices), similar to other commodities, but also the systems
mechanisms required to exploit the underlying resources.

A. Contract Overview
Table I highlights the current complexity of cloud contracts

by listing 11 different server contracts currently offered by
two popular cloud platforms (EC2 and GCE), and how they
differ in their cost model, price level, performance guarantees,
and risk exposure [1], [4]. Note that the table offers only a
coarse approximation of each contract’s terms, as they are
too complex to precisely capture in a single table. In general,
these contracts offer different tradeoffs between cost and risk,
such that the lower the risk exposure the higher the cost.

Unfortunately, categorizing cloud contracts is challenging,
since the contracts mix and match numerous arcane options.
We outline the basic options below and their tradeoff. Note
that, for simplicity, we do not include all available options.

We list seven distinct contract types in Table I.1 On-demand
servers are the simplest contract, incurring a fixed price per
unit time, e.g., every hour or minute, and enabling users to
request and relinquish them at anytime. Reserved servers differ
from on-demand servers in that they incur a much higher
upfront cost for a 1- or 3-year term, and have no rejection
risk. By contrast, platforms may periodically reject new re-
quests for on-demand servers [22]. However, reserved servers
eliminate much of the elasticity benefits of using the cloud for
variable workloads, and may significantly increase costs if not
highly utilized. To provide some elasticity for reserved servers,
platforms also operate reserved server marketplaces, where
users can recoup their upfront costs—if they are not utilizing
reserved servers as expected—by selling the remaining term of
their reservations. The price of reserved servers in this market
varies based on supply and demand, and is similar to a futures
market, where users lock in a price for future resources.

Spot servers are perhaps the most direct example of dy-
namism in the cloud market. Spot servers generally offer
low prices (∼50-90% less than on-demand) but expose users
to a high revocation risk, since a price spike that causes a
revocation can occur at anytime. Interestingly, spot servers
have a higher obtainability than on-demand servers, since their
price is market-driven: if users bid high enough, they are
nearly guaranteed to acquire a spot server. In prior work, we
show that users can acquire spot servers even during periods
when requests for on-demand servers are rejected [22].

The global spot market is massive, as EC2 operates a
separate spot market with its own dynamic spot price for each
server type and configuration in each Availability Zone (AZ)
of each region.2 Importantly, there is often a difference in the
price of the same server in different AZs, and the normalized
price per unit of resource of different servers in the same AZ.
Such price differentials in the market represent a potential
arbitrage opportunity that financially-aware applications can
exploit to lower their costs. For example, Figure 1(top) is an

1We repeat some contract types to reflect their different options.
2Different AZs are akin to separate data centers.



Fig. 1: The spot price of the m4.large server varies across
two AZs of EC2’s US-East region over 8/16 (top). The nor-
malized efficiency in $/ECU of the m4 family of servers varies
across spot markets within each availability zone of the US-
East-1 region over 8/16 (bottom). The red dot indicates the
on-demand price. Analysis and figure from [23].

analysis from recent work [23] that shows the m4.large
server’s price in two AZs of EC2’s US-East-1 region over
August 2016 differs by up to 30×. Similarly, Figure 1(bottom)
(also from [23]) shows the average normalized price per EC2
Compute Unit (ECU), which defines a relative measure of a
server’s integer processing power [24], for the five different
servers in the m4 server family of the same AZ differs by
up to 4× over the same period. These price differentials
represent a potential arbitrage opportunity that financially-
aware applications can exploit to lower their costs. Similarly,
preemptible VMs in GCE also have a low price and high
revocation risk, but instead incur a fixed price.

Spot and preemptible servers represent a type of transient
server that is available for an uncertain amount of time, and
may be revoked at anytime. Since their introduction [25],
[26], there has been significant research on optimizing system
performance on transient servers in many contexts [25], [26],
[27], [28], [29], [30], [31]. As we discuss in prior work [31],
transient servers require the use of fault-tolerance mechanisms
to gracefully handle revocations. Since these fault-tolerance
mechanisms incur an overhead, the performance and value
of transient servers is inherently less than that of stable on-
demand servers. Spot-block contracts were recently introduced
by EC2 to mitigate the impact of revocations on performance
by enabling users to bid for fixed blocks of time between one
and six hours. If allocated, the platform guarantees to revoke
spot-block servers only at the end of their time block but not
before. Since spot-block servers have no revocation risk over
their time block, they are worth more than spot servers, e.g.,
costing ∼50%, and do not require the continuous use of high-
overhead fault-tolerance mechanisms.

Finally, users may select from servers offered under the
contracts that are either burstable or not burstable, such
that they have either high or low performance variability,

respectively [32]. The latter allocates cores to VMs and
exhibits low performance variability (only due to cross-talk
among co-located VMs), while the former allows VMs to
fairly share cores, such that performance varies based on
the utilization of co-located VMs. To eliminate performance
variability, platforms also offer dedicated servers on isolated
hardware. In general, since performance variability is a form of
risk, the more variable the performance the lower the cost, e.g.,
dedicated servers cost more than servers with low performance
variability, which cost more than those with high performance
variability. Variable performance has a similar affect on cost-
efficiency as variable spot prices, as in both cases, the cost per
unit of resource consumed is variable.

B. Related Work
There is a long history of prior research on market-based

resource allocation prior to the emergence of cloud computing,
e.g., [33], [34], [35], [36], [37], [21], [38], [39]. Limited space
precludes surveying the entire body of work. However, prior
work is not applicable to today’s cloud markets, as it focused
on i) optimizing resource allocation in synthetic markets
using virtual currency, ii) did not address risk management
in modern distributed applications, and iii) did not envision
the diversity and complexity of cloud server contracts.

More recently, there has been a variety of work on exploit-
ing arbitrage in the spot market by both researchers [40], [41],
[29], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52] and industry [53], [54], [55]. However, this prior work
only focuses on spot servers and does not leverage the wide
range of other contracts offered by cloud platforms. Thus, this
prior work does not consider the full range of “investment”
strategies available to users. In addition, by focusing on spot
servers, the allocation policies are inherently short-term and
do not consider longer term investment strategies, e.g., using
reserved servers. Prior work also often focuses on optimizing
the use of spot servers for only narrow classes of applica-
tions [40], [29], [41] that necessitates complex application-
specific modifications [42], [29], [28], [47], [48], [30].

Financial cloud computing is broader than the work above
in that it focuses on developing general platforms and tools
that simplify development across a wide range of financially-
aware applications, which leverage the full range of contracts
offered by cloud platforms (potentially over much longer time
horizons). While some recent work examines other cloud
contracts, it focuses on “gaming” their inefficiencies and not
simplifying the development of market-aware applications. For
example, Zheng et al. [56] exploit GCE’s billing model, which
offers a sustained-use discount that reduces a server’s per-
hour price the longer a user holds it, by enabling users to
hold servers indefinitely and resell their resources to other
consumers. Likewise, HCloud attempts to select contracts
based on predictions of servers’ performance variability [32].

In addition, there have also been recent proposals (largely
in industry) for forming an exchange for trading financial
derivatives on cloud resources, e.g., futures, swaps, etc. [8],
[9], as well as some initial research on such financial instru-
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Fig. 2: Depiction of cloud risk management strategies—diversification, active trading, and hedging—adapted from finance.

ments [5], [57], [58], [59]. However, unlike financial cloud
computing, these proposals treat server resources exactly like
other commodities, such as electricity, fuel, gold, corn, etc.,
and do not consider i) the impact of risk on a running
applications’ performance and availability or ii) the complexity
of developing automated applications that are market-aware.

III. RISK MANAGEMENT TECHNIQUES

Financial cloud computing adapts and extends concepts
from finance to manage various forms of risk in cloud markets.
In particular, Figure 2 depicts three general techniques for
managing risk in finance: diversification, active trading, and
hedging. Below, we discuss these techniques and how they can
be adapted and extended to cloud platforms.

A. Diversification
Diversification reduces risk by investing in a variety of

assets, such that the aggregate portfolio of the combined
assets has less volatility than any one of the individual assets.
Figure 2(a) depicts how the aggregate price of a diversified
portfolio can be less volatile than its underlying assets. In
constructing a diversified portfolio, the goal is to maximize
its risk-adjusted returns, i.e., the returns per the level of
risk exposure. Note that the absolute returns on a diversified
portfolio may be less than the returns on a portfolio that
includes only a single asset, but with less risk (or variability) in
the expected outcome. For example, in the cloud spot market, a
distributed application that prioritizes minimizing cost may opt
to select all servers from the cheapest spot market. While this
approach may incur the lowest cost, it exposes the application
to a high risk of revocation, since a single price spike in the
market may trigger the concurrent revocation of all servers. If
revocations actually occur, then an application may run for a
longer period that causes it to incur a much higher cost in some
cases. In contrast, diversifying server selection across multiple
spot servers with higher, but uncorrelated, prices, may increase
the expected cost but lowers the risk of concurrent revocations
(and thus the probability of incurring a high cost).

Applications can apply diversification across multiple di-
mensions. The example above diversifies across servers in
different spot markets. Similarly, applications can diversify
across contracts by adapting the mix of reserved, on-demand,

and spot servers they use over time. As we discuss below,
adapting the mix of contracts is related to active trading of
contracts and hedging long-term versus short-term risk. While
there is a large body of work on portfolio construction in
finance, this work generally derives from Modern Portfolio
Theory (MPT) [60], which is a mathematical framework
for maximizing expected returns for a given level of risk
exposure. In recent work, we adapted MPT to guide spot server
selection in cloud markets [61]. We summarize this MPT cloud
adaptation below as one example of adapting and extending
existing diversification techniques from finance to the cloud.

MPT defines the risk-adjusted returns for a portfolio of
investments as the expected return across all the investments,
e.g., based on history, discounted by the portfolio’s weighted
risk, where the weight α defines the investor’s risk tolerance:
E[Return] − α · Risk. The expected return is the average
return of each of n investments in the portfolio weighted by
the amount of each investment held. MPT captures each in-
vestment’s returns using a vector c = [Return1, . . . ,Returnn].
Similarly, we let xi denote the fraction of each investment i
held in a portfolio (0 ≤ xi ≤ 1). Given this, MPT computes
the expected return of a portfolio as E[Return] = cxT , where
x = [x1, · · ·xn] denotes the portfolio allocation vector.

MPT captures a portfolio’s risk based on the likelihood
of correlated prices among its investments. MPT defines risk
across many investments by quantifying the likelihood of cor-
related prices among the investments. In a low-risk portfolio,
if one investment’s price spikes, the other investments’ prices
are unlikely to experience a concurrent spike, dampening the
impact of individual price fluctuations. MPT computes risk by
defining a covariance matrix V that captures pairwise correla-
tions between all investment pairs, where Vij is the correlation
between investments i, j. Thus, in MPT, Risk = xVxT .

For a given set of investments and α, this MPT formula-
tion defines the optimization problem below that is solvable
using any off-the-shelf convex solver, such as CPLEX [62].
The solution to MPT defines an efficient frontier of optimal
portfolios that offer the highest expected return for a given
level of risk (or, equivalently, the lowest risk for a given level
of expected return). While there are many possible portfolios
on the efficient frontier, which differ in the level of risk they



Fig. 3: Cost savings and revocation risk of portfolios with
different risk tolerances. Selecting a portfolio from a larger
collection of servers (all US-east-1 vs. only r3 servers) results
in higher returns at lower risk. Figure from [61].

expose to users, portfolios that lie below the efficient frontier
do not provide enough return for their level of risk.

Maximize: cxT − αxVxT (1)

Subject to:
n∑

1

xi = 1

x ≥ 0

To adapt MPT to the cloud, we consider each spot server
in our application’s “portfolio” to represent an “investment.”
Likewise, each spot servers’ “return” can be computed relative
to the “risk free” return defined by the equivalent on-demand
server’s price. Thus, for a spot server in market i, Returni =
1 − E[Si]

Di
where Di denotes the on-demand cost and E[Si]

denotes the average spot price of market i. Of course, spot
servers are not investment holdings in a traditional sense, as
applications only rent time on servers and do not sell them at a
later date. In particular, the primary “risk” in using spot servers
is that of mass revocations due to correlated price increases,
which cause a high performance penalty. Thus, rather than
compute the covariance matrix of pure spot prices, we instead
compute the covariance matrix of revocations [61].

Figure 3 demonstrates the benefits of intelligent portfolio
selection by computing the efficient frontier for different
risk tolerances of portfolios drawn from different sets of
cloud servers. As the figure shows, the expected cost savings
increase as applications take on additional risk. In one case,
we construct a portfolio from every cloud server available in
EC2’s us-east-1 region, and in the other case we restrict
the portfolio selection to only the r3 server types in the
us-east-1 region. As the figure shows, the former results
in a 1% increase in cost savings, but a 20-50% reduction
in revocation risk, i.e., the probability of all servers in the
portfolio being concurrently revoked. This reduction occurs
because choosing from a larger set of candidate markets
increases the number of markets with low correlations.

Note that our current MPT extension does not consider the
effect of revocations on application performance. As discussed
earlier, the performance impact of revocations can be miti-
gated by employing fault-tolerance techniques, which in-turn
incur their own overhead that can increase costs or decrease

performance. Thus, it is important to select and tune fault-
tolerance techniques based on the expected server volatility to
optimize cost and performance. For example, prior work shows
that different fault-tolerance techniques, such as replication
and checkpointing, have different overheads, depending on an
application’s resource usage and price characteristics [29]. In
addition, recent work also looks at optimizing checkpointing
for different applications to balance its performance overhead
and benefits [42], [30], [27], [28]. In some cases, this work
takes advantage of characteristics of specific applications, such
as the DAG structure of many “big data” frameworks [27].

Our current MPT adaptation i) does not consider the ef-
fect of fault-tolerance mechanisms on the optimal portfolio
and ii) focuses purely on spot and on-demand servers. We
are considering these extensions as part of future work. An
efficient frontier that considers fault-tolerance mechanisms is
likely different and application-specific. We can also apply
similar principles from finance to diversify our holdings across
other types of contracts in Table I. For example, we can
balance the use of reserved, spot, and on-demand servers
based on long-term expectations of our workload. Purchasing
reserved contracts can “lock in” prices in the future if the
future workload is well-known. Even if the future workload
changes, we can sell the remaining term on reservations in
a futures market. EC2 operates such a reserved marketplace
where the remaining term on reservations are offered for a
variable price. We could also leverage variable performance
servers by translating variations in performance to variations
in price per unit of resource purchased. In addition, sup-
porting multiple applications introduces additional possible
extensions, as there is an opportunity to carve up larger servers
among applications, e.g., using resource containers.

B. Active Trading
Since both cloud market prices and application resource

usage are highly dynamic and change in real time, the cost
per unit of resource consumed by an application on a server
is highly dynamic. Thus, at start time, while an application
might select the cheapest available server to execute, over the
course of its execution, market conditions might change such
that another server is cheaper (or less risky). Financial cloud
computing should enable applications to exploit these cheaper
prices by “trading” resources and proactively migrating to the
cheaper host. Virtualized platforms capable of such transparent
“trading,” including nested virtual machines [63], [64] and
resource containers [65], [66], are now widely available.
Figure 2(b) shows how trading at the “right” time can reduce
costs. In this case, the application trades a VM in market A
for a VM in market B just as market A’s price spikes, enabling
it to maintain a low overall price throughout its execution.

The diversification techniques above only select from
servers offered by the primary cloud market to include in its
portfolio based on their historical price and volatility charac-
teristics. Thus, the techniques do not consider actively trading
servers as market conditions change. Such high-frequency
active trading servers provides applications another dimension



by which to reduce their risk. For example, by always trading
for the server with the lowest price, relative to its on-demand
price, applications can nearly eliminate the risk of revocation,
since lower prices (relative to the on-demand price) indicates
low risk. Of course, trading to minimize risk presents a
tradeoff with other potential objectives. For example, the
lowest risk server may not be the most cost-efficient (in terms
of price per resources consumed) or the most performance-
efficient (in terms of eliminating performance bottlenecks).
Thus, applications must define trading policies that define their
tradeoff between risk, cost, and performance.

There are many possible trading policies for cloud servers.
In finance, there are standard measures for assessing the risk-
adjusted returns of a single asset, similar to the MPT approach
above. For example, the Sharpe Ratio is the most common
measure: for an asset i, it is the ratio of the expected difference
between the asset’s returns Ri and the risk-free returns Rfree

divided by the standard deviation of the returns σi. As above,
the risk free price is captured by a server’s on-demand price.
Essentially, the Sharpe ratio quantifies returns relative to risk
exposure. Note that many similar metrics have been proposed
in finance for assessing the risk-adjusted price of a single asset,
such as the Treynor, Sortino, Sterling ratios, etc.

Si =
E[Ri −Rfree]

σi
(2)

Thus, trading policies could rank markets based on these
ratios and then trade servers to ensure an application runs on
the highest ranked server. Of course, these ratios only capture
price risk, and do not consider other important metrics for
cloud servers, such as resource usage and performance. For
example, an application may execute a trade if its workload
demands increase, and the resources of its current server
are not adequate. In addition, “trading” servers incurs some
overhead to migrate state from one server to another. In some
cases, this overhead may cause downtime and unavailability,
e.g., if live migration is not available. Thus, applications may
need to rate-limit their trades to ensure a target level of
availability. In general, we must adapt the approaches above
for financial cloud computing, to consider not only the price
level and its volatility, but also performance and availability.

Active trading policies must also consider the different
overheads required to transition within data centers (or AZs),
between data centers, and across wide geographical regions.
For example, trading a server in the U.S. East region for a
server in Asia, which requires migrating state, will incur a
much larger overhead than trading for another server within
the U.S. East region. In recent work, we show that the selection
of a data center (or AZ) and region based on the average price
across all servers in the AZ or region can be just as important
as selecting the individual server market that maximizes the
risk-adjusted returns [67]. This is akin to investors that not
only make investment decisions based on individual stock
prices, but also on the characteristics of broad market indices,
such as the S&P 500, NASDAQ, and Dow Jones. Thus, an
application may not choose the globally optimal server if

Spot Market Revocations
(per day)

c3.2xlarge.vpc.1a 22.6
g2.2xlarge.vpc.1e 21.8
g2.8xlarge.1a 18.0
m4.large.vpc.1d 17.6
m3.xlarge.vpc.1d 17.6
m4.xlarge.vpc.1a 16.4
r3.4xlarge.1a 15.8
g2.2xlarge.vpc.1a 15.7
c3.2xlarge.vpc.1e 15.7
c3.xlarge.1a 15.2
Trading Policy 7.5

TABLE II: A risk-averse trading policy can achieve a lower
revocation rate than any primary server by migrating to the
server with the lowest risk of revocation. Table from [23].

it resides in an AZ or region that has a high overall price
or volatility. One advantage of making decisions based, in
part, on these broader market indices is that they tend to
be more stable and predictable than individual spot markets.
While there has been significant prior work on modeling and
predicting individual spot market prices in EC2, there has
been little work on characterizing price indices for different
availability zones, regions, and server classes. However, our
experience suggests that, for flexible applications capable of
trading, the characteristics of these broader price indices are
more important than the characteristics of individual servers.

By actively trading servers based on changes in price, we
can effectively define new “derivative” cloud servers that have
different cost, risk, performance, and availability characteris-
tics than any server in the primary cloud market. For example,
Table II from recent work [23] simulates the benefits of a
trading policy that continuously migrates to the lowest risk
server. In this case, we only consider migrating among a
subset of the ten most volatile markets in EC2 with the highest
revocation rates. The figure shows the average revocation rate
for these volatile spot servers over August 2016, as well as
the average revocation rate achieved by the simulated trading
policy as their spot prices fluctuate. The table demonstrates
that a trading policy can create a derivative cloud server with
a revocation rate over 2× less than any single server in the
primary cloud market, even the one with the lowest absolute
revocation rate. Thus, in this case, by transparently trading
resources we created a new “derivative” server with much
lower risk than any server in the primary market. Table III
shows a similar result for a trading policy that continuously
migrates to the lowest cost server among the servers listed.
As above, the “derivative” server created by the cost-based
trading policy has a >2× lower cost than any primary server.

In addition, such active trading approaches could be com-
bined with the MPT-based diversification strategies above.
In effect, these derivative servers introduce a nearly infinite
number of server options for MPT that were not previously
available to select from. However, computing the new ef-
ficient frontier based on the new set of derivative servers
defined by various trading policies introduces a significant
challenge, especially when considering that the “optimal” risk



Spot Market Efficiency
(¢/ECU-hr)

m1.small.1d 44.00
m1.small.vpc.1d 43.99
m1.large.vpc.1d 43.75
m1.large.1d 43.75
m1.xlarge.vpc.1d 43.75
m1.xlarge.1d 43.74
g2.8xlarge.vpc.1d 24.99
m3.medium.1c 23.33
m3.medium.vpc.1c 23.33
d2.2xlarge.1b 22.42
Automaton 10.89

TABLE III: A cost-efficient trading policy can achieve a lower
cost than any primary server by migrating to the server with
the current lowest cost. Table from [23].
tolerance on an application’s efficient frontier also depends on
the overhead of the fault-tolerance mechanisms applications
employ to mitigate the effect of revocations. Thus, determining
how to select and tune trading policies and fault-tolerance
mechanisms to construct a diversified application-specific port-
folio represents a significant research challenge. In addition,
the ultimate benefits of such approaches relative to applying
diversification in the primary market is an open question.

C. Hedging
The diversification and trading techniques above integrate

directly with applications and systems. These techniques re-
quire adapting applications to optimize the tradeoff between
cost, risk, performance, and availability. However, some appli-
cations may not be easily adaptable. For example, to recover
from spot server revocations, applications often periodically
checkpoint their state, and then resume from the last check-
point. However, not all applications are amenable to such
periodic checkpointing. Since, for these applications, restarting
may be the only viable option, spot server revocations may
result in financial losses, since applications must still pay for
revoked servers even though their cycles were wasted.

We can manage risk for these applications by adapting
and extending another technique from finance: hedging. A
hedge is an investment that offsets the potential losses (or
gains) from another investment. For example, airlines and
electric utilities often hedge against volatility in future fuel
and electricity prices by purchasing futures contracts, which
guarantee payment and delivery of fuel or electricity for a
set price at a future date. Hedging strategies differ widely
based on the type of investment, and are typically done
through pure financial instruments, such as futures contracts,
short selling, etc. While the diversification strategies above
may affect application performance and availability, hedging
in cloud markets enables applications to offset any potential
financial losses from using the market, and thus provides an
orthogonal application-independent way to manage cloud risk.

To understand hedging, consider the analogy of a user
buying a home or a car: they also purchase insurance to protect
their financial investment. If the car or home is damaged,
e.g., due to an accident or a fire, then the insurance can
pay for the loss. A similar analogy holds for businesses

purchasing a hedge (in the form of a financial option) on a
commodity, such as fuel or an agricultural product. If the price
of this commodity rises above a threshold set by the option,
then the option covers all the “losses” incurred by the price
increase. Many businesses, such as airlines, frequently hedge
on commodities, to guard against price spikes.

Insurance and option markets spread the risk of a single ‘bad
event” over time. With insurance, users pay regular premiums
which increase the effective cost of their investment, but gain a
buffer against catastrophic events by getting a refund on their
investment. For the insurance provider, a large pool of users
allows it to spread its risk by ensuring that it has to refund
only a small fraction of customers at any given time.

We can apply similar types of hedging techniques to cloud
servers using the same principle. Consider a user that leases N
spot servers or preemptible VMs. Suppose that the servers get
revoked after time t. Then the user must still pay N×t×Price
to the cloud operator. If the jobs running on these servers are
not amenable to checkpointing, this represents a complete loss,
since the jobs must be restarted from the beginning, and the
computation done prior to the revocation is wasted.

To avoid such losses, a third-party cloud provider could
offer “hedged cloud servers,” which are built using revocable
spot or preemptible servers, but are priced differently. Specif-
ically, the cost of a hedged server is higher than a regular
revocable server, where the price difference is equivalent to
the server’s “insurance premium.” If the platform revokes the
server, then the user is given a full or partial refund of their
bill, similar to how an insurance policy pays out on the loss
of an insured product. Figure 2(c) depicts the cost of a hedged
server, where, prior to a revocation, the user pays an additional
premium for the server. However, the insurance policy pays
out when the revocation occurs, allowing the user to recoup
any resulting financial losses. Such hedged cloud servers could
specify many different options that offer different levels of
protection over different time horizons, similar to different
values and terms on life insurance policies.

Of course, “pricing” such options requires analyzing the
revocation probability of spot servers and the pool of cus-
tomers requesting protection. As with insurance, the goal is to
keep the premiums low so that it is attractive for customers
to “insure” their cloud servers from revocation, while also
ensuring that the refunds do not exceed the total premiums. As
an example, below we illustrate a simple initial option pricing
scheme for single-server cloud jobs running on spot servers.

For each job, we take the historical Mean-Time-Between-
Failure (MTBF) of each spot server (based on historical spot
price traces) and the job’s estimated running time L, to
compute the expected probability p that the job’s spot server
is revoked over its duration, where p = L

MTBR . Given this
revocation risk, the option pays out a refund R if a revocation
actually occurs. Since the refund payouts must be less than the
premium revenues over the long run, the following inequality
must hold: Π ≥ p

R = L
MTBR ·R. Thus, the premium depends

on the refund amount R, the MTBR, and the job’s running
time, and may be adjusted by the user. For example, a user



(a) Application-aware Design (b) Application-specific Design (c) Application-independent Design

Fig. 4: Three different points in the design space for financially-aware systems: an application-aware design that requires
application modifications, an application-specific design that supports a particular class of applications (in this case, batch
jobs), and an application-independent design that is entirely transparent and supports any application.

might set a refund amount equal to the total cost of running
the job on the server. We have analyzed the average price and
MTBF across 1500 EC2 spot markets. Our analysis indicates
that premiums are low in most cases, since the MTBR of
most spot markets is ∼100 hours. Thus, for a ten hour job,
the premium’s cost is only 5% of the average spot server
price. Since spot servers are typically 50-90% cheaper than
on-demand servers, this premium overhead for spot servers is
still small relative to their potential savings.

D. Exploiting Multiple Providers

While we discuss the risk management techniques within
the context of a single provide, in this case EC2, above, apply-
ing the techniques across multiple providers has many benefits.
Since different providers offer different contracts at different
prices, the use of multiple providers opens up additional
optimization opportunities. For example, rather than offer a
reserved instance, Google offers a sustained usage discount on
on-demand instances that have been operating for an extended
period of time. Likewise, as mentioned earlier, Google offers
preemptible instances—its version of spot instances—for a
fixed price. Thus, applications can consider the presence of
these contracts when composing a diversified portfolio or
considering trading opportunities. As an application’s resource
usage varies, the “optimal” server contract or set of servers
may change from one provider to another. Of course, there
are potential overheads to using multiple providers that must
be considered for such optimizations, such as the time to
migrate state between providers (or replicate input data), and
configuring networks to maintain connectivity.

IV. FINANCIAL CLOUD COMPUTING PLATFORMS

The risk management techniques above focus on different
policies for selecting server (and contracts) that balance risk,
cost, performance, and availability tradeoffs. Financial cloud
computing platforms implement these policies in conjunction
with other important functions, including resource and price
monitoring and fault-tolerance. Each of these functions can
be implemented at either the application-level or systems-level
of the software stack. For example, much of the prior work
on optimizing for spot instances in EC2 integrates market-
aware optimizations directly into the application. As a result,
these optimizations are tailored to each specific application and
are not applicable to other applications. In contrast, the risk

management techniques in the previous section are general and
applicable across a wide range of applications. General risk
management strategies permit systems-level implementations
that can either apply to broad classes of applications or
be entirely application-independent. Below, we summarize
three different design points—application-aware, application-
specific, and application-independent—depicted in Figure 4
from our recent work, as well as discuss other possible designs.

A. Application-aware Design

In recent work, we designed a platform for portfolio-
driven resource management on transient servers, called Exo-
Sphere [61]. Similar to other cluster managers, like Mesos and
Kubernetes, ExoSphere supports a large class of data-parallel
applications, such as Spark and Hadoop, on cloud platforms.
Importantly, ExoSphere decouples the server selection policy
from the application by automatically selecting from the
available set of spot servers using the MPT formulation from
the previous section. As a result, ExoSphere relieves individual
applications (and developers) from monitoring market prices
and optimizing server selection. However, as discussed in the
previous section, there are certain aspects of running on spot
servers that are inherently application-specific, such as the
choice of fault-tolerance mechanisms to handle revocations.

To support such application-specific choices, ExoSphere
enables application’s to register handlers that it asychronously
upcalls at regular intervals or when specific market events
occur, such as a spike in prices or a server revocation.
These upcalls enable applications to adjust their operation or
portfolio risk tolerance based on changes in market conditions.
For example, applications can select and configure their own
application-specific fault-tolerance mechanism, e.g., check-
pointing or replication, to mitigate the loss of state on a revo-
cation. We have used ExoSphere to port multiple applications,
including Spark, Hadoop, and MPI jobs, to efficiently use
spot servers on EC2. Exosphere’s application-aware design is
depicted in Figure 4(a), as it requires application modifications
to respond to market events.

B. Application-specific Design

Figure 4(b) depicts the architecture of SpotOn [29], a batch
scheduler that acquires its resources from EC2’s spot market.
This represents another point in the design space where the
system transparently supports a particular class of applications,



in this case batch jobs, without requiring any modifications.
This architecture enables the system to select the spot servers
and the underlying fault-tolerance mechanism, e.g., replication
or checkpointing, in concert to optimize application perfor-
mance and cost. Since the design is transparent to applica-
tions, it does not permit applications to react to unexpected
changes to market conditions or workload demands, which
may decrease the savings relative to ExoSphere’s application-
aware approach. However, the advantage of this design is
that application’s require no modifications. The difference is
akin to similar problems in operating system design, which
must either reveal or hide resource allocation decisions from
upper-level applications: while approaches that reveal resource
allocation decisions can improve performance, they can also
increase application complexity. ExoSphere adopts an “ex-
okernel” approach that reveals changes in market conditions
that applications can respond to, while SpotOn adopts a more
traditional approach that hides resource allocation decisions.

C. Application-independent Design

Finally, Figure 4(c) shows SpotCheck [68], which represents
an application-independent design that supports any applica-
tion by attempting to mask the complexity of the underly-
ing market. Similar to derivative servers, SpotCheck defines
a derivative cloud, which repackages and resells resources
purchased from native IaaS platforms under contract terms
tailored to a specific class of user. As with derivative servers,
a derivative cloud can offer resources with different pricing
models and availability guarantees not provided by native
cloud platforms using a mix of resources purchased under
different contracts. Derivative clouds completely decouple
“investment” decisions in cloud resources from the higher-
level application decision to create virtualized instances, e.g.,
using resource containers or nested VMs. That is, applications
can create as many virtualized instances as they wish, while
the derivative cloud decides how to acquire cloud resources
and map the virtualized instances onto them.

SpotCheck is a derivative cloud that provides availability
guarantees similar to on-demand instances, but for a price near
that of spot instances. Essentially, SpotCheck migrates away
from spot servers upon revocation (with the help of a backup
server) to maintain availability. While SpotCheck enables
completely transparent use of spot instances (unlike the two
previous designs), it comes at a cost in both performance and
price. In particular, SpotCheck must maintain an additional
backup server to store live memory state to handle revocations
at an additional cost, such that each application must commit
all writes to the backup server in real-time to ensure it can
recover on a revocation. This overhead adds an additional
performance cost relative to the other designs above.

D. Other Design Points
There are other designs possible, including hybrids. For

example, a hybrid design could actively manage the ratio of
reserved, spot, and on-demand servers based on expectations
of future workload demands and prices without attempting

to entirely mask revocations from users like SpotCheck, but
instead provide upcall interfaces similar to ExoSphere on a re-
vocation. Another design could support multiple broad classes
of applications, such as batch and interactive applications.
In this case, interactive applications might require allocating
many more spot servers than necessary to achieve a target
level of available capacity with high probability to ensure low
latency responses, thereby leaving some resources idle much
of the time. Since spot servers have low prices, this approach
will still be cheaper than allocating on-demand servers. In
this case, the background tasks could execute “for free” on
the variable amount of idle capacity. Cluster managers, such
as Mesos and Kubernetes, already support a similar binary
distinction between background and foreground tasks.

V. CONCLUSION

This paper introduces the emerging area of financial cloud
computing and outlines its potential benefits. Financial cloud
computing focuses on adapting and extending concepts from
economics and finance to explicitly manage applications’
tradeoffs between cost, risk, availability, and performance in
cloud markets. Importantly, rather than define application-
specific market optimization techniques as in prior work,
financial cloud computing focuses on supporting more general
policies and systems that support broad classes of applications.
We outline three general risk management strategies from
finance and discuss how we have adapted and extended them to
support cloud resources in recent work. For each general risk
management strategy, we also discuss additional extensions
and optimization opportunities, as well as the potential to
combine them. We then discuss different designs for financial
cloud computing that integrate risk management at different
layers of the software stack, and detail the tradeoffs for each.
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